skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Jianghao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The storage of renewable energy is the major hurdle during the transition of fossil resources to renewables. A possible solution is to convert renewable electricity to chemical energy carriers such as hydrogen for storage. Herein, a highly efficient formate-piperidine-adduct (FPA) based hydrogen storage system was developed. This system has shown rapid reaction kinetics of both hydrogenation of piperidine-captured CO 2 and dehydrogenation of the FPA over a carbon-supported palladium nano-catalyst under mild operating conditions. Moreover, the FPA solution based hydrogen storage system is advantageous owing to the generation of high-purity hydrogen, which is free of carbon monoxide and ammonia. In situ ATR-FTIR characterization was performed in order to provide insight into the reaction mechanisms involved. By integrating this breakthrough hydrogen storage system with renewable hydrogen and polymer electrolyte membrane fuel cells (PEMFC), in-demand cost-effective rechargeable hydrogen batteries could be realized for renewable energy storage. 
    more » « less